Showing posts with label Qubit. Show all posts
Showing posts with label Qubit. Show all posts

Thursday, March 17, 2016

New Discovery Helps to Put Quantum Computers within Closer Reach

New strategy helps quantum bits stay on task


Findings published today in Nature may advance the era of quantum computers.

16 March 2016

National High Magnetic Field Laboratory (MagLab)

TALLAHASSEE, Fla.

MagLab scientists have demonstrated a way to improve the performance of the powerful but persnickety building blocks of quantum computers (called quantum bits, or qubits) by reducing interference from the environment.

[caption id="attachment_757" align="aligncenter" width="665"]New Discovery Helps to Put Quantum Computers within Closer Reach www.quantumcomputingtechnologyaustralia.com-120 New Discovery Helps to Put Quantum Computers within Closer Reach[/caption]

Published today in the prominent journal Nature, this interdisciplinary collaboration between physicists and chemists may hasten the development of quantum computers.

Quantum computers are one of the holy grails of modern applied physics. Compared to today's computers, which rely on transistors to process "bits" of information in the form of binary 0s or 1s, quantum computers hold the promise of performing certain computational tasks exponentially faster. Their power could potentially dwarf that of today's machines, with huge implications for cryptography, computational chemistry and other fields.

Such astounding feats are possible only in the "quantum" world of atoms and sub-atomic particles, where the physical rules governing how things behave are quite different from those of the "classical" world we live in. But the quantum phenomena that make quantum computers feasible are also the very reason they are extremely challenging to build.

That's the paradoxical nut that a team of scientists, including physicists Dorsa Komijani and Stephen Hill, director of the MagLab's Electron Magnetic Resonance Facility, has spent years attacking. And while they have not broken that nut open entirely, they have made an important crack.

To understand their crack, it helps to first know a few basics about quantum mechanics.

While qubits can take many different forms, the MagLab team worked with carefully designed tungsten oxide molecules that contained a single magnetic holmium ion. The magnetic electrons associated with each holmium ion circulate either clockwise or counterclockwise around the axis of the molecule. These so-called spin states are analogous to the "0s" and "1s" of the computer you may be reading this on. But because we're in the quantum world, there's a bonus: the qubit can be in both the 0 and 1 states at the same time in what is termed a quantum superposition — a kind of heaven for decision-averse wafflers. In this case, the superposition involves a mix of the two spin states, with a spectrum of almost infinite possibilities between the fully clockwise and fully counterclockwise states. This is where the added computational power comes from.

Magnetic qubits can also interact with each other over relatively large distances using their magnetic fields, a phenomenon known as entanglement. In a useful quantum computer, large numbers of entangled qubits would perform in perfect unison. Unfortunately, the real world is full of magnetic disturbances (physicists call this "noise") that can also become entangled with the qubits, interfering with the calculations. It's like being interrupted when you're trying to do complex arithmetic in your head and having to start over. This breakdown is called "decoherence."

In the Nature paper, the MagLab team describes a new way to significantly reduce this decoherence in magnetic molecules.

It turns out that chemists can assemble molecules with special spin states that, when placed in a magnetic field, are immune to magnetic disturbances, similar to the way noise-canceling headphones allow you to listen to your favorite music in high fidelity. This sweet spot that allows qubits to interact without interference is called an atomic clock transition, or ACT. Atomic clocks rely on the same quantum physics principle to remain accurate.

The MagLab team was able to keep its holmium qubit working coherently for 8.4 microseconds — long enough for it to potentially perform useful computational tasks.

"I know 8.4 microseconds doesn't seem like a big deal," said Komijani. "But in molecular magnets, it is a big deal, because it's very, very long. But the important point is not the long coherence time; it's the approach that we used to get to this coherence time."

Now that the MagLab team has shown that ACTs can be used as a mechanism to make quantum computers work, it's up to chemists to tweak more molecules so that they are capable, under the right conditions, of creating a coherence sweet spot for qubits.

"That's why this is important," said Komijani. "We're saying, ‘See, we found this capability in molecular magnets. Now you guys, you chemists, go ahead and make stuff that has this capability so we can find the atomic clock transitions.'"

The Nature paper is part of a larger research effort expected to yield additional publications.

"We're just contributing a tiny, tiny amount of research," said Komijani. "But it's important because it's saying that you can play around with your qubit by changing the magnetic field it's in and moving from where the coherence is very low to the sweet spot, where it's very high."

The other contributors on the Nature paper are Muhandis Shiddiq, a postdoctoral associate in physics at the Technical University in Dortmund, Germany, and former MagLab grad student who is joint first author (with Komijani) on the study; and chemists Yan Duan, Alejandro Gaita-AriƱo and Eugenio Coronado, all of the Institute of Molecular Science in Valencia, Spain.

News Release Source : New strategy helps quantum bits stay on task

Image Credit : National High Magnetic Field Laboratory (MagLab)

Thursday, March 10, 2016

The Optical Chip Simultaneously Generate Multiphoton Qubits

INRS takes giant step forward in generating optical qubits


The optical chip developed at INRS by Prof. Roberto Morandotti’s team overcomes a number of obstacles in the development of quantum computers, which are expected to revolutionize information processing. The international research team has demonstrated that on-chip quantum frequency combs can be used to simultaneously generate multiphoton entangled quantum bit (qubit) states.

10/03/2016

INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE - INRS

Quantum computing differs fundamentally from classical computing, in that it is based on the generation and processing of qubits.Unlike classical bits, which can have a state of either 1 or 0, qubits allow a superposition of the 1 and 0 states (both simultaneously).Strikingly, multiple qubits can be linked in so-called ‘entangled’ states, where the manipulation of a single qubit changes the entire system, even if individual qubits are physically distant.This property is the basis for quantum information processing, aiming towards building superfast quantum computers and transferring information in a completely secure way.

[caption id="attachment_751" align="aligncenter" width="640"]The Optical Chip Simultaneously Generate Multiphoton Qubits www.quantumcomputingtechnologyaustralia.com-119             The Optical Chip Simultaneously Generate Multiphoton Qubits[/caption]

Professor Morandotti has focused his research efforts on the realization of quantum components compatible with established technologies.The chip developed by his team was designed to meet numerous criteria for its direct use:it is compact, inexpensive to make, compatible with electronic circuits, and uses standard telecommunication frequencies.It is also scalable, an essential characteristic if it is to serve as a basis for practical systems.But the biggest technological challenge is the generation of multiple, stable, and controllable entangled qubit states.

The generation of qubits can rely on several different approaches, includingelectron spins, atomic energy levels, and photon quantum states. Photons have the advantage of preserving entanglement over long distances and time periods.But generating entangled photon states in a compact and scalable way is difficult.“What is most important, several such states have to be generated simultaneously if we are to arrive at practical applications,” added INRS research associate Dr. Michael Kues.

Roberto Morandotti’s team tackled this challenge by using on-chip optical frequency combs for the first time to generate multiple entangled qubit states of light.As Michael Kues explains, optical frequency combs are light sources comprised of many equally-spaced frequency modes.“Frequency combs are extraordinarily precise sources and have already revolutionized metrology and sensing, as well as earning their discoverers the 2005 Nobel Prize in Physics.”


Thanks to these integrated quantum frequency combs, the chip developed by INRS is able to generate entangled multi-photon qubit states over several hundred frequency modes.It is the first time anyone has demonstrated the simultaneous generation of qubit multi-photon and two-photon entangled states:Until now, integrated systems developed by other research teams had only succeeded in generating individual two-photon entangled states on a chip.

The results published in Science will provide a foundation for new research, both in integrated quantum photonics and quantum frequency combs.This could revolutionize optical quantum technologies, while at the same time maintaining compatibility with existing semiconductor chip technology.

News Release Source : INRS takes giant step forward in generating optical qubits

Image Credit : INRS