Showing posts with label Quantum Computing Technology. Show all posts
Showing posts with label Quantum Computing Technology. Show all posts

Tuesday, November 28, 2017

University of Sydney Miniaturised a Component for the Scale-up of Quantum Computing






Key component to scale up quantum computing invented







28 November 2017







Sydney team develops microcircuit based on Nobel Prize research













Invention of the mrowave circulator is part of a revolution in device engineering needed to build a large-scale quantum computer.



A team at the University of Sydney and Microsoft, in collaboration with Stanford University in the US, has miniaturised a component that is essential for the scale-up of quantum computing. The work constitutes the first practical application of a new phase of matter, first discovered in 2006, the so-called topological insulators.

[caption id="attachment_840" align="aligncenter" width="1280"]University of Sydney Miniaturised a Component for the Scale-up of Quantum Computing University of Sydney Miniaturised a Component for the Scale-up of Quantum Computing[/caption]

Beyond the familiar phases of matter - solid, liquid, or gas - topological insulators are materials that operate as insulators in the bulk of their structures but have surfaces that act as conductors. Manipulation of these materials provide a pathway to construct the circuitry needed for the interaction between quantum and classical systems, vital for building a practical quantum computer.

Theoretical work underpinning the discovery of this new phase of matter was awarded the 2016 Nobel Prize in Physics.

The Sydney team’s component, coined a microwave circulator, acts like a traffic roundabout, ensuring that electrical signals only propagate in one direction, clockwise or anti-clockwise, as required. Similar devices are found in mobile phone base-stations and radar systems, and will be required in large quantities in the construction of quantum computers. A major limitation, until now, is that typical circulators are bulky objects the size of your hand.

This invention, reported by the Sydney team today in the journal Nature Communications, represents the miniaturisation of the common circulator device by a factor of 1000. This has been done by exploiting the properties of topological insulators to slow the speed of light in the material. This minaturisation paves the way for many circulators to be integrated on a chip and manufactured in the large quantities that will be needed to build quantum computers.

Source : University of Sydney



Tuesday, July 25, 2017

Microsoft teams up with Sydney University for Quantum Computing







Microsoft teams up with Sydney University for Quantum Computing


The University of Sydney

25/07/2017


Australian lab part of IT giant's ramped-up quantum computing bid Share















A multi-year partnership announced today establishes ongoing investment focused on Sydney’s Quantum Nanoscience Laboratory to scale-up devices, as Microsoft moves from research to real-world engineering of quantum machines.


The University of Sydney today announces the signing of a multi-year quantum computing partnership with Microsoft, creating an unrivalled setting and foundation for quantum research in Sydney and Australia.

[caption id="attachment_835" align="aligncenter" width="704"]Microsoft teams up with Sydney University for Quantum Computing                            Microsoft teams up with Sydney University for Quantum Computing[/caption]

The long-term Microsoft investment will bring state of the art equipment, allow the recruitment of new staff, help build the nation’s scientific and engineering talent, and focus significant research project funding into the University, assuring the nation a key role in the emerging “quantum economy.”



David Pritchard, Chief of Staff for Microsoft’s Artificial Intelligence and Research Group and Douglas Carmean, Partner Architect of Microsoft’s Quantum Architectures and Computation (QuArC) group, participated in the announcement at  the University of Sydney’s Nanoscience Hub.

The official establishment of Station Q Sydney today embeds Microsoft’s commitment to kickstarting the emergence of a quantum economy by partnering with the University to develop a premier centre for quantum computing.

Directed by Professor David Reilly from the School of Physics and housed inside the $150 million Sydney Nanoscience Hub, Station Q Sydney joins Microsoft’s other experimental research sites at Purdue University, Delft University of Technology, and the University of Copenhagen. There are only four labs of this kind in the world.







We’ve reached a point where we can move from theory to applied engineering for significant scale-up.
Professor David Reilly




Sydney-born Professor Reilly – who completed a postdoctoral fellowship at Harvard University before returning to Australia – asserts that quantum computing is one of the most significant opportunities in the 21st century, with the potential to transform the global economy and society at large.

“The deep partnership between Microsoft and the University of Sydney will allow us to help build a rich and robust local quantum economy by attracting more skilled people, investing in new equipment and research, and accelerate progress in quantum computing – a technology that we believe will disrupt the way we live, reshaping national and global security and revolutionising medicine, communications and transport,” Professor Reilly said.

The focus of Professor Reilly and his team at Station Q Sydney is to bring quantum computing out of the laboratory and into the real world where it can have genuine impact: “We’ve reached a point where we can move from mathematical modelling and theory to applied engineering for significant scale-up,” Professor Reilly said.

Leveraging his research in quantum computing, Professor Reilly’s team has already demonstrated how spin-off quantum technologies can be used in the near-future to help detect and track early-stage cancers using the quantum properties of nanodiamonds. Watch the video animation.

Microsoft’s David Pritchard outlined the company’s redoubled quantum efforts, a key strategic pillar within Microsoft’s AI and Research Group; the quantum computing effort is being led by Todd Holmdahl, the creator of the Xbox and HoloLens.

Mr Pritchard said the partnership with the University of Sydney was important because Microsoft is looking forward to reaching the critical juncture where theory and demonstration need to segue and be complemented by systems-level abstraction and applied engineering efforts focused on scaling.

“There’s always an element of risk when you are working on projects with the potential to make momentous and unprecedented impact; we’re at the inflection point now where we have the opportunity to do that,” Mr Pritchard said.

Source : The University of Sydney






Thursday, August 4, 2016

Quantum Computing Leap Closer to Reality with a Chemistry Breakthrough

Quantum computing closer with chemistry breakthrough






18 July 2016

The University of Sydney




Simple chemistry poised to unlock complex computer problems.












Quantum computing is a leap closer to reality with a chemistry breakthrough demonstrating it is possible for nanomaterials to operate at room temperature rather than at abolute zero experienced in deep space (-273C).

[caption id="attachment_826" align="aligncenter" width="611"]Quantum Computing Leap Closer to Reality with a Chemistry Breakthrough     Quantum Computing Leap Closer to Reality with a Chemistry Breakthrough[/caption]

"Chemistry gives us the power to create nanomaterials on demand."

- Dr. Dr Mohammad Choucair.

The key to quantum computing could be a simple as burning the active ingredient in moth balls; using this method, the holy grail of quantum computing – the ability to work in ‘real-world’ room temperatures – has been demonstrated by an international group of researchers, combining chemistry with quantum physics.

Co-led by Dr Mohammad Choucair – who recently finished a University of Sydney research fellowship gained as an outstanding early career researcher in the School of Chemistry – the 31-year-old has been working with collaborators in Switzerland and Germany for two years before the breakthrough.

The team has made a conducting carbon material that they demonstrated could be used to perform quantum computing at room temperature, rather than near absolute zero (-273°C).

The material is simply created by burning naphthalene; the ashes form the carbon material. Not only has it solved the question of temperature, it also addresses other issues such as the need for conductivity and the ability to integrate into silicon.

The results are published today in the high-impact journal Nature Communications.

Dr Choucair said the discovery meant as a result, practical quantum computing might be possible within a few years. “We have made quantum computing more accessible,” he said. “This work demonstrates the simple ad-hoc preparation of carbon-based quantum bits.

“Chemistry gives us the power to create nanomaterials on-demand that could form the basis of technologies like quantum computers and spintronics, combining to make more efficient and powerful machines.”

The next step is to build a prototyping chip – but Dr Choucair said he was particularly interested in the possibilities that could come from longer-term research. Rather than seeking comprehensive commercial opportunities, he plans to use the facilities at the University-based Australian Institute for Nanoscale Science and Technology and further the work at its headquarters, the new $150m Sydney Nanoscience Hub.

Dr Choucair said he was passionate about improving technology for the public and supported open access research. “Quantum computing will allow us to advance our technology and our understanding of the natural world,” he said.

“Whether it’s designing drugs to cure cancer, cleaning our air or addressing our energy concerns, we need to build more complex computers to solve these complex problems.”

News Release Source : Quantum computing closer with chemistry breakthrough

Image Credit : The University of Sydney




Sunday, April 24, 2016

Australian Prime Minister Hails UNSW's Quantum Computing Research as the World's Best

Opening: Prime Minister hails UNSW's quantum computing research as the world's best


UNSW
Friday, 22 April, 2016

Prime Minister Malcolm Turnbull, accompanied by the Minister for Industry, Innovation and Science, Christopher Pyne, today opened a new quantum computing laboratory complex at UNSW

[caption id="attachment_802" align="aligncenter" width="5760"]Australian Prime Minister Hails UNSW's Quantum Computing Research as the World's Best www.quantumcomputingtechnologyaustralia.com-126 Australian Prime Minister Hails UNSW's Quantum Computing Research as the World's Best[/caption]

"There is no bolder idea than quantum computing," said Prime Minister Turnbull, hailing UNSW's research in the transformative technology as the “best work in the world".

He praised the leadership of Scientia Professor Michelle Simmons, director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) and congratulated the centre's team on their research breakthroughs.

"You're not just doing great work, Michelle, you're doing the best work in the world.

"You're not just solving the computing challenges and determining the direction of computing for Australia, you are leading the world and it is a tribute to your leadership, your talent ... that you've attracted so many outstanding scientists and engineers from around the world,” Mr Turnbull said.

"This is a very global team and it's right here at the University of New South Wales.”

The laboratories will double the productive capacity of the UNSW headquarters of the CQC2T.

They will also be used to advance development work to commercialise UNSW’s ground-breaking quantum computing research and establish Australia as an international leader in the industries of the future. The work has attracted major investment from the Australian Government, the Commonwealth Bank of Australia and Telstra.

CQC2T is leading the international race to build the world’s first quantum computer in silicon.

The new laboratories, which have been funded by UNSW, will house six new scanning tunnelling microscopes, which can be used to manipulate individual atoms, as well as six cryogenic dilution refrigerators that can reach ultra-low temperatures close to absolute zero.

“The international race to build a super-powerful quantum computer has been described as the space race of the computing era,” said Professor Michelle Simmons.

“Our Australian centre’s unique approach using silicon has given us a two to three-year lead over the rest of the world. These facilities will enable us to stay ahead of the competition.”

The new labs will also be essential for UNSW researchers to capitalise on the commercial implications of their work.

In December 2015, as part of its National Innovation and Science Agenda, the Australian Government committed $26 million towards a projected $100 million investment to support the commercial development of UNSW’s research to develop a quantum computer in silicon.

Following the Australian Government’s announcement of support, the Commonwealth Bank of Australia and Telstra each pledged $10 million for the development of a ten-qubit prototype. This prototype will be partly designed and built in the new facility.

“In addition to our fundamental research agenda, we now have an ambitious and targeted program to build a ten-qubit prototype quantum integrated circuit within five years,” said Professor Simmons. “By mapping the evolution of classical computing devices over the last century we would expect commercial quantum computing devices to appear within 5-10 years of that milestone.”

It is a prospect strongly endorsed by UNSW President and Vice-Chancellor Professor Ian Jacobs.

“UNSW is committed to supporting world-leading research, and quantum computing is a key part of our future strategy. We are excited by the opportunities these new laboratories provide us to work jointly with industry and government.

“Our hope, long term, is that this will one day establish Australia as an international leader in one of the key industries of the future,” Professor Jacobs said.

Commonwealth Bank Chief Information Officer David Whiteing said: “Commonwealth Bank is proud to support the University of New South Wales' world-leading quantum computing research team and join the Australian Government in providing tangible support for their National Innovation and Science Agenda.

“In today’s world everyone relies increasingly on computers from those in the palm of our hand to the computers on our desk. Quantum computing is set to increase the speed and power of computing beyond what we can currently imagine. This is still some time in the future, but the time for investment is now. This type of long-term investment is a great example of how collaboration between universities, governments and industry will benefit the nation and our economy, now and into the future.”

Kate McKenzie, Telstra Chief Operations Officer, said that the opening of the new CQC2T laboratories was a significant milestone for science and innovation in Australia.

“In December 2015 we announced our proposed $10 million investment to help with development of silicon quantum computing technology in Australia with CQC2T. It’s an important part of Telstra’s commitment to help build a world class technology nation,” Ms McKenzie said.

“Quantum computing has huge potential globally, so I’m delighted to be here today to see this dynamic, world-leading program.”

Researchers at CQC2T lead the world in the engineering and control of individual atoms in silicon chips

The UNSW-based ARC Centre of Excellence for Quantum Computation and Communication Technology is leading the global race to build the world’s first quantum computer in silicon.

In 2012, a team led by Professor Simmons, of the Faculty of Science, created the world’s first single‑atom transistor by placing a single phosphorus atom into a silicon crystal with atomic precision, achieving a technological milestone ten years ahead of industry predictions. Her team also produced the narrowest conducting wires ever made in silicon, just four atoms of phosphorus wide and one atom high.

In 2012, researchers led by Professor Andrea Morello, of the Faculty of Engineering, created the world’s first qubit based on the spin of a single electron on a single phosphorus atom embedded in silicon.

In 2014, his group then went on demonstrate that these qubits could be engineered to have the longest coherence times (greater than 30 seconds) and highest fidelities (>99.99%) in the solid state.

In 2013, Scientia Professor Sven Rogge, of the Faculty of Science, demonstrated the ability to optically address a single atom, a method that could allow the long-distance coupling of qubits.

And in 2015, researchers led by Scientia Professor Andrew Dzurak, of the Faculty of Engineering, built the first quantum logic gate in silicon – a device that makes calculations between two qubits of information possible. This clears one of the critical hurdles to making silicon-based quantum computers a reality.

More Information Links:

Backgrounder: Quantum computing at UNSW and timeline of major scientific and engineering advances

Backgrounder: New quantum computing laboratories at UNSW

News Release Source : Opening: Prime Minister hails UNSW's quantum computing research as the world's best

Image Credit : UNSW

Wednesday, March 30, 2016

Russian Scientists Developed Russia’s First Two-Qubit Quantum Circuit

MIPT’s scientists develop Russia’s first two-qubit quantum circuit


MIPT
28-03-2016

A research group from MIPT’s Artificial Quantum System Laband Collective Use Center developed and tested Russia’s first superconducting two-qubit feedback-controlled circuit, an upgrade to qubit — the main component of future quantum computers — that was developed by MIPT’s scientists in 2015.




[caption id="attachment_768" align="aligncenter" width="694"]Russian Scientists Developed Russia’s First Two-Qubit Quantum Circuit www.quantumcomputingtechnologyaustralia.com-122                              Russian Scientists Developed Russia’s First Two-Qubit Quantum Circuit[/caption]

Modern computing components can only store one data bit at a time — 1 or 0. Qubits, as quantum objects that are in superposition of two states at a time, have the potential to store both. Moreover, they serve as an example of the so-called ‘quantum entanglement’, opening game-changing ways for data processing. A data machine made of thousands of qubits has the capacity to surpass the most powerful supercomputers in a large amount of computing tasks, such as cryptography, artificial intelligence and optimisation of complex systems.


A year ago a research group from Moscow Institute of Physics and Technology (MIPT), Institute of Solid State Physics RAS (ISSP RAS), National Institute of Science and Technology (MISIS) and Russian Quantum Center (RQC) developed Russia’s first qubit along with a parameter measuring circuit. The project success is largely based on active international collaboration. MIPT’s Artificial Quantum System Lab (AQS), headed by academic Oleg Astafiev, leads by example, within a year having established a strong and effective partnership with Royal Holloway, University of London, a leading institution in superconducting qubit research in the UK.


The two-qubit circuit is currently being developed and tested by Russian scientists from MIPT. “In the past 6 months the MIPT’s lab has done substantial and laborious work to organise the measuring process of superconducting qubits. Arguably, MIPT currently has the necessary infrastructure and human capacity to deliver on building advanced qubit systems”, comments Alexey Dmitriyev, a postgraduate at AQS.


Dmitry Negrov, Deputy Head at the Collective Use Center, says: ”We now are at the stage where system parameters are close to the designed conditions. The next step is to take vital measurements, such as coherence time and refine the qubit bonding. We aim to continue our work on these parameters in the future”.


According to Andrey Baturin, Head of Scientific Management at MIPT, quantum technology research is one of the long-term priorities on the institute’s research agenda. “The Artificial Quantum System Lab and Collective Use Center succeeded in obtaining unique equipment — modern lithographic machines and evaporation units for full-cycle production of qubits and, later, qubit systems; measuring equipment and ultra low temperature cryostats that allow us to work with qubits at the milli-Kelvin temperature range. Such low temperatures are essential due to the extreme fragility of quantum states that can easily fail from interaction with the outside environment”, says Baturin.


The development of two-qubit circuits is an important achievement that allows further field research and raises Russia’s stance in the global quantum computing race.


News Source Release : MIPT’s scientists develop Russia’s first two-qubit quantum circuit


Image Credit : Moscow Institute of Physics and Technology(MIPT)

Thursday, March 3, 2016

Quantum Computers Begin to End The Traditional Encryption Schemes?

The beginning of the end for encryption schemes?


New quantum computer, based on five atoms, factors numbers in a scalable way.

MIT
March 3, 2016

What are the prime factors, or multipliers, for the number 15? Most grade school students know the answer — 3 and 5 — by memory. A larger number, such as 91, may take some pen and paper. An even larger number, say with 232 digits, can (and has) taken scientists two years to factor, using hundreds of classical computers operating in parallel.

[caption id="attachment_746" align="aligncenter" width="639"]Quantum Computers Begin to End The Traditional Encryption Schemes? www.quantumcomputingtechnologyaustralia.com-118      Quantum Computers Begin to End The Traditional Encryption Schemes?[/caption]

Because factoring large numbers is so devilishly hard, this “factoring problem” is the basis for many encryption schemes for protecting credit cards, state secrets, and other confidential data. It’s thought that a single quantum computer may easily crack this problem, by using hundreds of atoms, essentially in parallel, to quickly factor huge numbers.

In 1994, Peter Shor, the Morss Professor of Applied Mathematics at MIT, came up with a quantum algorithm that calculates the prime factors of a large number, vastly more efficiently than a classical computer. However, the algorithm’s success depends on a computer with a large number of quantum bits. While others have attempted to implement Shor’s algorithm in various quantum systems, none have been able to do so with more than a few quantum bits, in a scalable way.

Now, in a paper published today in the journal Science, researchers from MIT and the University of Innsbruck in Austria report that they have designed and built a quantum computer from five atoms in an ion trap. The computer uses laser pulses to carry out Shor’s algorithm on each atom, to correctly factor the number 15. The system is designed in such a way that more atoms and lasers can be added to build a bigger and faster quantum computer, able to factor much larger numbers. The results, they say, represent the first scalable implementation of Shor’s algorithm.

“We show that Shor’s algorithm, the most complex quantum algorithm known to date, is realizable in a way where, yes, all you have to do is go in the lab, apply more technology, and you should be able to make a bigger quantum computer,” says Isaac Chuang, professor of physics and professor of electrical engineering and computer science at MIT. “It might still cost an enormous amount of money to build — you won’t be building a quantum computer and putting it on your desktop anytime soon — but now it’s much more an engineering effort, and not a basic physics question.”

Seeing through the quantum forest

In classical computing, numbers are represented by either 0s or 1s, and calculations are carried out according to an algorithm’s “instructions,” which manipulate these 0s and 1s to transform an input to an output. In contrast, quantum computing relies on atomic-scale units, or “qubits,” that can be simultaneously 0 and 1 — a state known as a superposition. In this state, a single qubit can essentially carry out two separate streams of calculations in parallel, making computations far more efficient than a classical computer.

In 2001, Chuang, a pioneer in the field of quantum computing, designed a quantum computer based on one molecule that could be held in superposition and manipulated with nuclear magnetic resonance to factor the number 15. The results, which were published in Nature, represented the first experimental realization of Shor’s algorithm. But the system wasn’t scalable; it became more difficult to control the system as more atoms were added.

“Once you had too many atoms, it was like a big forest — it was very hard to control one atom from the next one,” Chuang says. “The difficulty is to implement [the algorithm] in a system that’s sufficiently isolated that it can stay quantum mechanical for long enough that you can actually have a chance to do the whole algorithm.”

“Straightforwardly scalable”

Chuang and his colleagues have now come up with a new, scalable quantum system for factoring numbers efficiently. While it typically takes about 12 qubits to factor the number 15, they found a way to shave the system down to five qubits, each represented by a single atom. Each atom can be held in a superposition of two different energy states simultaneously. The researchers use laser pulses to perform “logic gates,” or components of Shor’s algorithm, on four of the five atoms. The results are then stored, forwarded, extracted, and recycled via the fifth atom, thereby carrying out Shor’s algorithm in parallel, with fewer qubits than is typically required.

The team was able to keep the quantum system stable by holding the atoms in an ion trap, where they removed an electron from each atom, thereby charging it. They then held each atom in place with an electric field.

“That way, we know exactly where that atom is in space,” Chuang explains. “Then we do that with another atom, a few microns away — [a distance] about 100th the width of a human hair. By having a number of these atoms together, they can still interact with each other, because they’re charged. That interaction lets us perform logic gates, which allow us to realize the primitives of the Shor factoring algorithm. The gates we perform can work on any of these kinds of atoms, no matter how large we make the system.”

Chuang’s team first worked out the quantum design in principle. His colleagues at the University of Innsbruck then built an experimental apparatus based on his methodology. They directed the quantum system to factor the number 15 — the smallest number that can meaningfully demonstrate Shor’s algorithm. Without any prior knowledge of the answers, the system returned the correct factors, with a confidence exceeding 99 percent.

“In future generations, we foresee it being straightforwardly scalable, once the apparatus can trap more atoms and more laser beams can control the pulses,” Chuang says. “We see no physical reason why that is not going to be in the cards.”

Mark Ritter, senior manager of physical sciences at IBM, says the group’s method of recycling qubits reduces the resources required in the system by a factor of 3 — a significant though small step towards scaling up quantum computing.

“Improving the state-of-the-art by a factor of 3 is good,” says Ritter. But truly scaling the system “requires orders of magnitude more qubits, and these qubits must be shuttled around advanced traps with many thousands of simultaneous laser control pulses.”

If the team can successfully add more quantum components to the system, Ritter says it will have accomplished a long-unrealized feat.

“Shor's algorithm was the first non-trivial quantum algorithm showing a potential of ‘exponential’ speed-up over classical algorithms,” Ritter says. “It captured the imagination of many researchers who took notice of quantum computing because of its promise of truly remarkable algorithmic acceleration. Therefore, to implement Shor's algorithm is comparable to the ‘Hello, World’ of classical computing.”

What will all this eventually mean for encryption schemes of the future?

“Well, one thing is that if you are a nation state, you probably don’t want to publicly store your secrets using encryption that relies on factoring as a hard-to-invert problem,” Chuang says. “Because when these quantum computers start coming out, you’ll be able to go back and unencrypt all those old secrets.”

News Source Release : The beginning of the end for encryption schemes?

Wednesday, September 23, 2015

Quantum Computing Industry Needs More Australian Government Support

Quantum industry needs more Australian government support






[caption id="attachment_661" align="aligncenter" width="563"]Quantum Computing Industry Needs More Australian Government Support www.quantumcomputingtechnologyaustralia.com-104 Quantum Computing Industry Needs More Australian Government Support[/caption]

Australia may be poised to win the international race to build a quantum computer, but without investment to scale-up and industrialise the technology, the long-term benefits could be lost offshore, says UNSW Scientia Professor Michelle Simmons.

Two weeks after winning the CSIRO Eureka Prize for Leadership in Science, Simmons is again in the spotlight, delivering a guest lecture at the Chief Executive Women’s 2015 annual dinner in Sydney.

As the Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, Simmons has been instrumental in positioning Australia as the front-runner in the global race to build a quantum computer based in silicon.

Addressing more than 900 of the nation’s top female leaders from the public and private sectors, Simmons spoke about her passion for physics and the importance of science education in high schools.

She also warned that Australia is at risk of missing out on the long-term benefits of the world-leading research conducted in her Centre.

  • “We are at risk of all the technology we have developed, and the trained human capital, being transferred overseas with little long-term benefit to Australia. The significance of this work to Australia should not be underestimated.”


“Australia has established a unique approach [to developing a quantum computer] with a competitive edge that has been described by our US funding agencies as having a two to three year lead over the rest of the world,” says Simmons.

Despite leading the world, she says “there is no mechanism in Australia to scale-up what we have achieved and to translate it industrially".

“We are at risk of all the technology we have developed, and the trained human capital, being transferred overseas with little long-term benefit to Australia.

“The significance of this work to Australia should not be underestimated.”

Exponential increase


Quantum computers are predicted to provide an extraordinary speed-up in computational power. For each quantum bit added to a circuit, the processing power doubles.

Instead of performing calculations one after the other like a conventional computer, these futuristic machines – which exploit the unusual quantum properties of single atoms, the fundamental constituents of all matter – work in parallel, calculating all possible outcomes at the same time.

They will be ideal for encrypting information and searching huge databases much faster than conventional computers, and for performing tasks beyond the capability of even the most powerful supercomputers, such as modelling complex biological molecules for drug development.

“It is predicted that 40% of all Australian industry will be impacted if we realise this technology.”

Simmons says an Australian-made prototype system using technologies patented by her team, where all functional components are manufactured and controlled on the atomic-scale, could be ready within five years.

The Commonwealth Bank of Australia recently invested $5 million into the project and Simmons says she is “negotiating contracts with several other computing, communications and aerospace industries both here and abroad”.

But the rest of the world is making giant strides, and putting up big money: the UK government recently put forward £270 million and the Dutch government €300 million to support quantum information research.

“Australia is a fantastic place to innovate,” says Simmons. “We attract the best young people from across the world and we undertake leading international science.

“Our challenge going forward is how to create the environment, opportunities and industries to keep them here.”

Choosing Australia


Simmons can speak from first-hand experience. She came to Australia back in 1999 for two reasons: the first, she says, “was academic freedom to pursue something ambitious and high risk", and the second "was Australia’s ‘can do’ attitude”.

In the mid-1990s, Simmons was working as an experimental quantum physicist at the University of Cambridge. She had mastered how to design, fabricate and measure electrical devices, which displayed strong quantum effects, and was looking for a new challenge: “to leapfrog the global IT industry and create devices at the atomic scale.”

When she was awarded an Australian Fellowship to come to UNSW, she withdrew applications for a fellowship to remain at Cambridge, and another for a faculty position at Stanford University in the US.

“The UK offered years surrounded by pessimistic academics, who would tell you a thousand reasons why your ideas would not work,” she says. “The US offered a highly competitive environment where you would have to fight both externally and internally for funds.

“Australia offered independent fellowships, ability to work on large projects with other academics and the ‘can do’ attitude to give it a go.”

Once in Australia, she set up a team that is still “unique internationally”.

“Our goal was to adapt the scanning tunnelling microscope (STM) developed by IBM not just to image atoms, but to manipulate them and to make a functional electronic device where the active component is a single atom.”

Critics, including senior scientists at IBM, believed there were at least eight insurmountable technical challenges.

“The consensus view within the scientific community was that the chances … were near impossible,” she says.

Simmons also had to combine two technologies in a way that had never been done before – the STM, which provides the ability to image and manipulate single atoms, and something known as molecular beam epitaxy, which provides the ability to grow a layer of material atom by atom.

“When I told the two independent system manufacturers in Germany about the idea, they said they would make a system to my design, but that there would be no guarantee that it would work. It was a $3.5 million risk.

“To my delight it worked a factor of six better than I had hoped. And over the past decade we have systematically solved all those eight challenges that were predicted to block our way.”

Her team has since developed the world’s first single atom transistor, as well as the narrowest conducting wires in silicon.

Finding physics


Simmons’ foray into physics began, in part, thanks to a chess match.

Simmons used to watch her father and brother playing intense games in her family’s living room in south-east London in the 1970s.

One day, the eight-year-old observer asked to play, eliciting a “somewhat dismissive and terse” response from her father, she recalls.

“A girl! Wanting to play chess. Well, he indulged me and did something that I believe changed the course of my life,” she says.

A surprise victory over her father, and several more over the coming months, saw Simmons take-up competitive chess at her father’s behest, ultimately becoming the London girls chess champion at 11.

Ultimately, it wasn’t her calling, but chess, she says, taught her to challenge herself and other people’s expectations, and to pursue something she truly loved.

That love ended up being physics: “I decided to pick the hardest thing that I could find that I enjoyed. Something that I could imagine I would always look forward to; would have to struggle to understand and would feel euphoric about when I had mastered it.”

She also credits an excellent physics teacher who challenged and encouraged her – and even lined up a phone conversation with a US astronaut, after he learned this was Simmons’ dream profession.

“The significance of having a passionate teacher, well versed in the subject they teach, cannot be underestimated,” she says. “Great teachers with high expectations challenge their students to be the best they can be.”

Simmons has exemplified that belief. She was named NSW Scientist of the Year in 2012, was awarded an ARC Laureate Fellowship in 2013, and in 2014 joined the likes of Stephen Hawking and Albert Einstein as an elected member of the American Academy of Arts and Science.

“For me, the next challenge is not just one of quantum physics, but of also finding a way to work with Australian government, and industries both here and abroad, to establish a high-tech quantum industry in Australia,” she says.

“To back its brightest and best and to ensure that Australian innovation stays here in Australia.

“It’s a challenge that I am up for. I fundamentally believe it is the right thing to do and now is the right time to do it.”

News Release Source :  Quantum industry needs more Australian government support

Image Credit : UNSW

Wednesday, August 12, 2015

John Stewart Bell Prize 2015 for Trailblazing Quantum Research Awarded to Quantum Physicist Professor Rainer Blatt

Ranier Blatt wins Bell Prize for trailblazing quantum research


Award conferred at Conference on Quantum Information and Quantum Control at the University of Toronto

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

On August 20th, 2015, world-renowned quantum physicist Rainer Blatt will be awarded a prestigious prize for his contributions to the development of quantum information technologies, during the Conference on Quantum Information and Quantum Control being held at the Fields Institute at the University of Toronto.

[caption id="attachment_612" align="aligncenter" width="500"]John Stewart Bell Prize 2015 Awarded to  Quantum Physicist Rainer Blatt www.quantumcomputingtechnologyaustralia.com-096 John Stewart Bell Prize 2015 Awarded to Quantum Physicist Rainer Blatt[/caption]

The fourth biennial John Stewart Bell Prize for Research on Fundamental Issues in Quantum Mechanics and Their Applications, administered by U of T's Centre for Quantum Information & Quantum Control, has been awarded to Professor Blatt, of the University of Innsbruck, by an arms'-length selection committee of international experts, "for his pioneering research on quantum information processing with trapped ions, in particular, for the recent demonstrations of analog and digital quantum simulators and quantum logic gates on a topologically encoded qubit."

A computer that exploits the strange features of quantum theory is extraordinarily more powerful than any silicon-based computer. This discovery of the mid 1990's triggered a race to develop so-called quantum computers. One of the most promising technologies for quantum computation is trapped ions (i.e. charged atoms). Professor Blatt is a pioneer and leader in this technology.

Professor Blatt will accept the award and deliver a lecture about his work, open to the public, at 1:30 pm on Thursday August 20th, in the main auditorium of the Fields Institute. More information about the Bell Prize can be found at http://cqiqc.physics.utoronto.ca/bell_prize/home.html and more information about the conference is at http://www.fields.utoronto.ca/programs/scientific/15-16/CQIQCVI/

News Release Source : Ranier Blatt wins Bell Prize for trailblazing quantum research

Information about Professor Ranier Blatt : http://cqiqc.physics.utoronto.ca/bell_prize/blatt.html

Image Credit : http://www.quantumoptics.at/index.php/en/rainerblatt

Tuesday, June 23, 2015

D-Wave Systems broken the 1000 qubit barrier for High Performance Quantum Computing

D-Wave Systems Breaks the 1000 Qubit Quantum Computing Barrier


Palo Alto, CA

June 22, 2015
D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier, developing a processor about double the size of D-Wave’s previous generation and far exceeding the number of qubits ever developed by D-Wave or any other quantum effort.  This is a major technological and scientific achievement that will allow significantly more complex computational problems to be solved than was possible on any previous quantum computer.

[caption id="attachment_588" align="aligncenter" width="650"]D-Wave Systems broken the 1000 qubit barrier for High Performance Quantum Computing www.quantumcomputingtechnologyaustralia.com-093 D-Wave Systems broken the 1000 qubit barrier for High Performance Quantum Computing[/caption]

D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.” Every additional qubit doubles the search space of the processor. At 1000 qubits, the new processor considers 21000possibilities simultaneously, a search space which dwarfs the 2512 possibilities available to the 512-qubit D-Wave Two. ‪In fact, the new search space contains far more possibilities than there are ‪particles in the observable universe.

“For the high-performance computing industry, the promise of quantum computing is very exciting. It offers the potential to solve important problems that either can’t be solved today or would take an unreasonable amount of time to solve,” said Earl Joseph, IDC program vice president for HPC. “D-Wave is at the forefront of this space today with customers like NASA and Google, and this latest advancement will contribute significantly to the evolution of the Quantum Computing industry.”

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​

  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.

  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.

  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.

  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.


“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A 1000 qubit processor will also be on display at the upcoming GEOINT conference in D-Wave’s booth, #10076.

News Release Source : D-Wave Systems Breaks the 1000 Qubit Quantum Computing Barrier

Image Credit : D-Wave Systems

Saturday, April 11, 2015

Bristol Quantum Information Technologies Workshop 2015

Bristol Quantum Information Technologies Workshop 2015


The Centre for Quantum Photonics is pleased to announce the return of the Bristol Quantum Information Technologies Workshop from the 15th - 17th April 2015.




[caption id="attachment_568" align="aligncenter" width="625"]Bristol Quantum Information Technologies Workshop 2015 Bristol Quantum Information Technologies Workshop 2015[/caption]



Bristol Quantum Information Technologies Workshop began in 2014 as part of a roadmap sponsored by the UK's Defence Science and Technology Laboratory and organised by the Centre for Quantum Photonics at the University of Bristol.We held our first meeting in February 2014 at Engineer's House, Bristol. The event proved to be a great success with nearly 90 delegates from around the globe all coming together to disucss topics such as the optical implementations of:

  • Quantum enhanced sensing/metrology



  • Quantum Computation and Simulation



  • Quantum Key Distribution and Communications


The first workshop resulted in a clear roadmap of the future for the quantum technologies. This year we want to go further to explore the changes in the quantum climate and further discuss the Quantum Technologies Revolution.

For more information about BQIT:15 or to register to attend please go to theconference website.

News Release Source : Bristol Quantum Information Technologies Workshop 2015

Image Credit : www.bristol.ac.uk

Friday, April 10, 2015

Quantum Ghosts are Helpful for Future Quantum Technologies

Quantum ghosts are helpful


Physical Review Letters paper


UNIVERSITY OF BRISTOL


The idea that far distant particles can somehow 'talk' to each other worried Einstein so much that he called it 'spooky action at a distance'.

[caption id="attachment_561" align="aligncenter" width="500"]Quantum Ghosts are Helpful for Future Quantum Technologies www.quantumcomputingtechnologyaustralia.com-089 Quantum Ghosts are Helpful for Future Quantum Technologies[/caption]

Having confirmed its existence, scientists today are learning how to use this 'spooky action' as a helpful tool. Now a team of physicists at the University of Bristol and Imperial College London have harnessed this phenomenon to shed light on another unusual and previously difficult aspect of quantum physics - that of distinguishing between two similar quantum devices.

In the everyday world any process can be considered as a black box device with an input and an output; if you wish to identify the device you simply apply inputs, measure the outputs and determine what must have happened in between.

But quantum black boxes are different. Distinguishing between them is impossible using only single particle inputs because the outputs are not distinguishable: a fundamental consequence of the laws of quantum mechanics is that only very few states of a quantum particle can be reliably distinguished from one another.

The Bristol-Imperial team has shown how to get around this problem using 'spooky action'.

Anthony Laing, PhD student in the Department of Physics, who performed the study, said: "Apart from providing insight into the fundamentals of quantum physics, this work may be crucial for future quantum technologies.

"How else could a future quantum engineer build a quantum computer if they can't tell which circuits they have?"

The new findings have implications for our understanding of quantum mechanics as well as the emerging potential of quantum information science.
###

This work was performed in the Bristol Centre for Quantum Photonics led by Professor Jeremy O'Brien (www.phy.bris.ac.uk/groups/cqp) as part of a collaboration with Dr Terry Rudolph at Imperial College London.

The paper in Physical Review Letters is published online ahead of print, 24 April 2009,http://link.aps.org/abstract/PRL/v102/e160502.

The work was supported by the US Intelligence Advanced Research Projects Activity (IARPA), the UK Engineering and Physical Sciences Research Council (EPSRC), the UK Quantum Information Processing Interdisciplinary Collaboration (QIP IRC), and the Leverhulme Trust.

News Release Source : Quantum ghosts are helpful

Image Credit : www.bristol.ac.uk

Wednesday, November 19, 2014

Piece of The Quantum Puzzle

A piece of the quantum puzzle


UCSB physicists demonstrate the high level of controllability needed to explore ideas in quantum simulations


While the Martinis Lab at UC Santa Barbara has been focusing on quantum computation, former postdoctoral fellow Pedram Roushan and several colleagues have been exploring qubits (quantum bits) for quantum simulation on a smaller scale. Their research appears in the current edition of the journal Nature.

[caption id="attachment_478" align="aligncenter" width="650"]Piece of The Quantum Puzzle www.quantumcomputingtechnologyaustralia.com-072 This image shows a top down view of the gmon qubit chip (0.6 cm x 0.6 cm) connected to microwave frequency control lines (copper) with thin wire bonds.[/caption]

"While we're waiting on quantum computers, there are specific problems from various fields ranging from chemistry to condensed matter that we can address systematically with superconducting qubits," said Roushan, who is now a quantum electronics engineer at Google. "These quantum simulation problems usually demand more control over the qubit system." Earlier this year, John M. Martinis and several members of his UCSB lab joined Google, which established a satellite office at UCSB.

In conjunction with developing a general-purpose quantum computer, Martinis' team worked on a new qubit architecture, which is an essential ingredient for quantum simulation, and allowed them to master the seven parameters necessary for complete control of a two-qubit system. Unlike a classical computer bit with only two possible states -- 0 and 1 -- a qubit can be in either state or a superposition of both at the same time, creating many possibilities of interaction.

One of the crucial specifications -- Roushan refers to them as control knobs or switches -- is the connectivity, which determines whether or not, and how, the two qubits interact. Think of the two qubits as people involved in a conversation. The researchers have been able to control every aspect -- location, content, volume, tone, accent, etc. -- of the communication. In quantum simulation, full control of the system is a holy grail and becomes more difficult to achieve as the size of the system grows.

"There are lots of technological challenges, and hence learnings involved in this project," Roushan said. "The icing on the cake is a demonstration that we chose from topology." Topology, the mathematical study of shapes and spaces, served as a good demonstration of the power of full control of a two-qubit system.

In this work, the team demonstrates a quantum version of Gauss's law. First came the 19th-century Gauss-Bonnet theorem, which relates the total local curvature of the surface of a geometrical object, such as a sphere or a doughnut, to the number of holes in the object (zero for the sphere and one for the doughnut). "Gauss's law in electromagnetism essentially provides the same relation: Measuring curvature on the surface -- in this case, an electric field -- tells you something about what is inside the surface: the charge," Roushan explained.

The novelty of the experiment is how the curvature was measured. Project collaborators at Boston University suggested an ingenious method: sensing the curvature through movement. How local curvature affects the motion can be understood from another analogy with electromagnetism: the Lorentz force law, which says that a charged particle in a magnetic field, which curves the space, is deflected from the straight pass. In their quantum system, the researchers measured the amount of deflection along one meridian of a sphere's curve and deduced the local curvature from that.

"When you think about it, it is pretty amazing," Roushan said. "You do not need to go inside to see what is in there. Moving on the surface tells you all you need to know about what is inside a surface."

This kind of simulation -- arbitrary control over all parameters in a closed system -- contributes to a body of knowledge that is growing, and the paper describing that demonstration is a key step in that direction. "The technology for quantum computing is in its infancy in a sense that it's not fully clear what platform and what architecture we need to develop," Roushan said. "It's like a computer 50 years ago. We need to figure out what material to use for RAM and for the CPU. It's not obvious so we try different architectures and layouts. One could argue that what we've shown is very crucial for coupling qubits when you're asking for a full-fledged quantum computer."

###


Lead co-authors are UCSB's Charles Neill and Yu Chen, of Google Inc., Santa Barbara. Other UCSB co-authors include Rami Barends, Brooks Campbell, Zijun Chen, Ben Chiaro, Andrew N. Cleland, Andrew Dunsworth, Michael Fang, Julian Kelly, Nelson Leung, Anthony Megrant, Josh Mutus, Peter O'Malley, Chris Quintana, Amit Vainsencher, Jim Wenner and Ted White, as well as Evan Jeffrey, Martinis and Daniel Sank of Google Inc., Santa Barbara, and Michael Kolodrubetz and Anatoli Polkovnikov of Boston University.

This work was supported by the National Science Foundation (NSF), the Office of the Director of National Intelligence and the Intelligence Advanced Research Projects Activity. Devices were made at the UCSB Nanofabrication Facility, part of the NSF-funded National Nanotechnology Infrastructure Network and the NanoStructures Cleanroom Facility.

News Release Source :  A piece of the quantum puzzle

Image Credit: Michael Fang, Martinis Lab

Wednesday, June 11, 2014

Researchers Find Weird Magic Ingredient for Quantum Computing

Researchers find weird magic ingredient for quantum computing

A form of quantum weirdness is a key ingredient for building quantum computers according to new research from a team at the University of Waterloo's Institute for Quantum Computing (IQC).
Researchers Find Weird Magic Ingredient for Quantum Computing
Researchers Find Weird Magic Ingredient for Quantum Computing
In a new study published in the journal Nature, researchers have shown that a weird aspect of quantum theory called contextuality is a necessary resource to achieve the so-called magic required for universal quantum computation.

One major hurdle in harnessing the power of a universal quantum computer is finding practical ways to control fragile quantum states. Working towards this goal, IQC researchers Joseph Emerson, Mark Howard and Joel Wallman have confirmed theoretically that contextuality is a necessary resource required for achieving the advantages of quantum computation.

"Before these results, we didn't necessarily know what resources were needed for a physical device to achieve the advantage of quantum information. Now we know one," said Mark Howard, a postdoctoral fellow at IQC and the lead author of the paper. "As researchers work to build a universal quantum computer, understanding the minimum physical resources required is an important step to finding ways to harness the power of the quantum world."

Quantum devices are extremely difficult to build because they must operate in an environment that is noise-resistant. The term magic refers to a particular approach to building noise-resistant quantum computers known as magic-state distillation. So-called magic states act as a crucial, but difficult to achieve and maintain, extra ingredient that boosts the power of a quantum device to achieve the improved processing power of a universal quantum computer.

By identifying these magic states as contextual, researchers will be able to clarify the trade-offs involved in different approaches to building quantum devices. The results of the study may also help design new algorithms that exploit the special properties of these magic states more fully.

"These new results give us a deeper understanding of the nature of quantum computation. They also clarify the practical requirements for designing a realistic quantum computer," said Joseph Emerson, professor of Applied Mathematics and Canadian Institute for Advanced Research fellow. "I expect the results will help both theorists and experimentalists find more efficient methods to overcome the limitations imposed by unavoidable sources of noise and other errors."

Contextuality was first recognized as a feature of quantum theory almost 50 years ago. The theory showed that it was impossible to explain measurements on quantum systems in the same way as classical systems.

In the classical world, measurements simply reveal properties that the system had, such as colour, prior to the measurement. In the quantum world, the property that you discover through measurement is not the property that the system actually had prior to the measurement process. What you observe necessarily depends on how you carried out the observation.

Imagine turning over a playing card. It will be either a red suit or a black suit - a two-outcome measurement. Now imagine nine playing cards laid out in a grid with three rows and three columns. Quantum mechanics predicts something that seems contradictory – there must be an even number of red cards in every row and an odd number of red cards in every column. Try to draw a grid that obeys these rules and you will find it impossible. It's because quantum measurements cannot be interpreted as merely revealing a pre-existing property in the same way that flipping a card reveals a red or black suit.

Measurement outcomes depend on all the other measurements that are performed – the full context of the experiment.

Contextuality means that quantum measurements can not be thought of as simply revealing some pre-existing properties of the system under study. That's part of the weirdness of quantum mechanics.


 The Irish Research Council (IRC) as part of the Empower Fellowship program financially supported Mark Howard. The study's authors acknowledge financial support from CIFAR and the Government of Canada through NSERC.

News Release Source : Researchers find weird magic ingredient for quantum computing

Thursday, March 27, 2014

Integration brings quantum computer a step closer

Integration brings quantum computer a step closer


An international research group led by the University of Bristol has made an important advance towards a quantum computer by shrinking down key components and integrating them onto a silicon microchip.
Integration brings quantum computer a step closer

Integration brings quantum computer a step closer


Scientists and engineers from an international collaboration led by Dr Mark Thompson from the University of Bristol have, for the first time, generated and manipulated single particles of light (photons) on a silicon chip – a major step forward in the race to build a quantum computer.

Quantum computers and quantum technologies in general are widely anticipated as the next major technology advancement, and are poised to replace conventional information and computing devices in applications ranging from ultra-secure communications and high-precision sensing to immensely powerful computers. While many of the components for a quantum computer already exist, for a quantum computer to be realised, these components need to be integrated onto a single chip.

Featuring today on the front cover of Nature Photonics, this latest advancement is one of the important pieces in the jigsaw needed in order to realise a quantum computer. While previous attempts have required external light sources to generate the photons, this new chip integrates components that can generate photons inside the chip. "We were surprised by how well the integrated sources performed together," admits Joshua Silverstone, lead author of the paper. "They produced high-quality identical photons in a reproducible way, confirming that we could one day manufacture a silicon chip with hundreds of similar sources on it, all working together. This could eventually lead to an optical quantum computer capable of perform enormously complex calculations."

"Single-photon detectors, sources and circuits have all been developed separately in silicon but putting them all together and integrating them on a chip is a huge challenge," explains group leader Mark Thompson. "Our device is the most functionally complex photonic quantum circuit to date, and was fabricated by Toshiba using exactly the same manufacturing techniques used to make conventional electronic devices."

The group, which, includes researchers from Toshiba Corporation (Japan), Stanford University (US), University of Glasgow (UK) and TU Delft (The Netherlands), now plans to integrate the remaining necessary components onto a chip, and show that large-scale quantum devices using photons are possible.

"Our group has been making steady progress towards a functioning quantum computer over the last five years," said Thompson. "We hope to have a photon-based device which can rival modern computing hardware for highly-specialised tasks within the next couple of years."

Much of the work towards this goal will be carried out at Bristol's new Centre for Doctoral Training in Quantum Engineering, which will train a new generation of engineers, scientists and entrepreneurs to harness the power of quantum mechanics using state-of-the-art engineering technique to make real world and useful quantum enhanced devices. This innovative centre bridges the gaps between physics, engineering, mathematics and computer science, working closely with chemists and biologists while interacting strongly with industry.
###

Friday, June 28, 2013

Paper presents effect of thermal noise on quantum annealing

Quantum Computing Firm D-Wave Systems Announces Publication of New Peer-Reviewed Paper in Nature Communications

BURNABY, British Columbia and PALO ALTO, Calif., May 22, 2013 /PRNewswire/ -- D-Wave Systems Inc., the world's first commercial quantum computing company, today announced the publication of a peer-reviewed paper entitled "Thermally assisted quantum annealing of a 16-qubit problem" in the journal Nature Communications.

The paper presents the results of the first experimental exploration of the effect of thermal noise on quantum annealing. Quantum annealing is the process by which qubits, the basic unit of information in a quantum computer, are slowly tuned (annealed) from their superposition state (where they are 0 and 1 at the same time) into a classical state (where they are either 0 or 1). D-Wave quantum computers use this process to solve optimization problems in which many criteria need to be considered in order to come up with the best solution. These types of problems exist in many disciplines, such as cancer research, image recognition, software verification, financial analysis and logistics.
Paper presents effect of thermal noise on quantum annealing

Using 16 qubits within a D-Wave processor, the experiments demonstrated that, for the problem studied, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time (the typical time it takes for environmental factors to start to corrupt the state of a qubit), the probabilities of performing a successful computation are similar to those expected for a fully coherent system. The experiments also demonstrated that by repeatedly annealing the open system quickly several times rather than annealing a hypothetical closed system slowly once, quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over the closed system (a closed system is one which does not interact with its environment, whereas an open system does interact with it).

"Our experiments demonstrated that mechanisms that many believed would disrupt quantum annealing (or AQC) calculations based on theoretical analyses of hypothetical, closed quantum systems operating at zero temperature don't necessarily do so for real, open quantum systems operating at finite temperature," said Eric Ladizinsky, co-founder and Chief Scientist of D-Wave. "One example of this, described in the paper, is that we found that a small amount of thermal noise (generally thought to be universally bad) can actually enhance problem solving effectiveness, rather than diminish it.  As all real quantum computers will inevitably be open quantum systems operating at finite temperature we hope our paper will encourage others to think more deeply about the prospects of quantum computing in open quantum systems."

This paper is the latest in a long line of peer-reviewed papers from D-Wave scientists. Earlier this year, D-Wave published another paper in Scientific Reports, a Nature Publishing Group journal, discussing the effect of environmental decoherence on the ground state during adiabatic quantum computation. Over the past decade, almost 60 peer-reviewed papers authored by scientists at D-Wave have been published in prestigious journals, including NaturePhysical ReviewScienceQuantum Information Processing, and the Journal of Computational Physics (see http://www.dwavesys.com/en/publications.html).

About D-Wave Systems Inc.

Founded in 1999, D-Wave's mission is to integrate new discoveries in physics and computer science into breakthrough approaches to computation. The company's flagship product, the 512-qubit D-Wave Two™ computer, is built around a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation. Recently D-Wave announced the installation of a D-Wave Two at the new Quantum Artificial Intelligence Lab created jointly by that NASA, Google and USRA. This came soon after Lockheed-Martin's purchase of an upgrade of their 128-qubit D-Wave One™ system to a 512-qubit D-Wave Two. With headquarters near Vancouver, Canada, the D-Wave U.S. offices are located in Palo Alto, California. D‑Wave has a blue-chip investor base including Bezos Expeditions, Business Development Bank of Canada, Draper Fisher Jurvetson, Goldman Sachs, Growthworks, Harris & Harris Group, In-Q-Tel, International Investment and Underwriting, and Kensington Partners Limited. 

For more information, visit: www.dwavesys.com or 



Wednesday, June 26, 2013

Quantum Computing Firm D-Wave Systems Announces Milestone of 100 U.S.Patents Granted

Quantum Computing Firm D-Wave Systems Announces Milestone of 100 U.S. Patents Granted

- Patent Portfolio also Rated #4 in Computing Systems by IEEE Spectrum in Latest Quality Assessment

BURNABY, British Columbia and PALO ALTO, Calif., June 20, 2013 /PRNewswire/ -- D-Wave Systems Inc., the world's first commercial quantum computing company, today announced it has been granted its 100th patent by the United States Patent and Trademark Office. This is an important milestone for the company, whose patent portfolio was also rated #4 in the Computer Systems category by IEEE Spectrum this past December, just behind computing giants IBM, HP and Fujitsu.

Quantum Computing Firm D-Wave Systems Announces Milestone of 100 U.S. Patents Granted
Quantum Computing Firm D-Wave Systems Announces Milestone of 100 U.S. Patents Granted


In order to build the world's first commercial quantum computer, D-Wave needed to significantly advance the state-of-the-art in a diverse set of domains in physics, system architecture, manufacturing and computer science. This ranged from the science of quantum computing to the development, fabrication and manufacturing of all elements of the system from the superconducting qubits to the quantum processor to the magnetic shielding and cooling and the software and algorithms.

In December of 2012, IEEE Spectrum announced their sixth Patent Power scorecard. According to IEEE Spectrum, "The scorecards are based on objective, quantitative benchmarking of the patent portfolios of more than 5000 leading commercial enterprises, academic institutions, nonprofit organizations, and government agencies. This benchmarking—carried out by us at 1790 Analytics, based in Haddonfield, N.J.—takes into account not only the size of organizations' patent portfolios but also the quality, as reflected in characteristics such as growth, impact, originality, and general applicability."

"Both the 100 patent milestone and the recognition by IEEE Spectrum for our patent quality is a reflection of the number of breakthroughs the company has made in order to actually develop, manufacture, sell and install the first commercial quantum computers," said Vern Brownell, D-Wave CEO. "The fact that D-Wave's patent portfolio is rated # 4 in a list that includes industry leaders like IBM, HP, Fujitsu, NEC, Dell, Cray and SGI is a testament to the hard work, dedication and passion of the D-Wave team. Furthermore, many of the breakthroughs these patents represent have been documented in more than 60 peer-reviewed scientific publications. I congratulate everyone at D-Wave for these achievements and for the commercial success that has resulted."

About D-Wave Systems Inc. Founded in 1999, D-Wave's mission is to integrate new discoveries in physics and computer science into breakthrough approaches to computation. The company's flagship product, the 512-qubit D-Wave Two™ computer, is built around a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation. Recently D-Wave announced the installation of a D-Wave Two system at the new Quantum Artificial Intelligence Lab created jointly by NASA, Google and USRA. This came soon after Lockheed-Martin's purchase of an upgrade of their 128-qubit D-Wave One™ system to a 512-qubit D-Wave Two computer. With headquarters near Vancouver, Canada, the D-Wave U.S. offices are located in Palo Alto, California. D‑Wave has a blue-chip investor base including Bezos Expeditions, Business Development Bank of Canada, Draper Fisher Jurvetson, Goldman Sachs, Growthworks, Harris & Harris Group, In-Q-Tel, International Investment and Underwriting, and Kensington Partners Limited. 

For more information, visit: www.dwavesys.com or 


News Release Link : http://www.prnewswire.com/news-releases/quantum-computing-firm-d-wave-systems-announces-milestone-of-100-us-patents-granted-212283621.html

Friday, June 14, 2013

New Quantum Artificial Intelligence Initiative

D-Wave Two™ Quantum Computer Selected for New Quantum Artificial Intelligence Initiative

System to be Installed at NASA's Ames Research Center, and Operational in Q3

BURNABY, British Columbia and PALO ALTO, Calif., May 16, 2013 /PRNewswire/ -- D-Wave Systems Inc., the world's first commercial quantum computing company, today announced that its new 512-qubit quantum computer, the D-Wave Two, will be installed at the new Quantum Artificial Intelligence Lab, a collaboration among NASA, Google and the Universities Space Research Association (USRA). The purpose of this effort is to use quantum computing to advance machine learning in order to solve some of the most challenging computer science problems. Installation has already begun at NASA's Ames Research Center in Moffett Field, California, and the system is expected to be available to researchers during Q3.

New Quantum Artificial Intelligence Initiative
New Quantum Artificial Intelligence Initiative

Researchers at Google, NASA and USRA expect to use the D-Wave system to develop applications for a broad range of complex problems such as machine learning, web search, speech recognition, planning and scheduling, search for exoplanets, and support operations in mission control centers. Via USRA the system will also be available to the broader U.S. academic community.

"D-Wave has made significant strides in the technology, application and now commercialization of quantum computing," saidSteve Conway, IDC research vice president for high performance computing. "The order for a D-Wave Two system for the initiative launched by NASA, Google and USRA attests to the revolutionary potential of this fundamentally different approach to computing for both industry and government. HPC buyers and users are looking for ways to speed up their applications beyond what contemporary technologies can deliver. IDC believes organizations that depend on leading-edge technology would do well to begin exploring the possibilities for quantum computing."

As part of the selection process, Google, NASA and USRA created a series of benchmark and acceptance tests that the new D-Wave 512-qubit system was required to pass before the installation at NASA Ames could proceed. In all cases, the D-Wave Two system met or exceeded the required performance specifications, in some cases by a large margin.

"We are extremely pleased to make this announcement," stated Vern Brownell, CEO of D-Wave. "Three world class organizations and their research teams will use the D-Wave Two to develop real world applications and to support research from leading academic institutions. This joint effort shows that quantum computing has expanded beyond the theoretical realm and into the worlds of business and technology."

About D-Wave Systems Inc.

Founded in 1999, D-Wave's mission is to integrate new discoveries in physics and computer science into breakthrough approaches to computation that serves business. The company's flagship product, the 512-qubit D-Wave Two™ computer, is built around a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation. The NASA/Google/USRA installation marks a significant broadening of D-Wave's customer base, and comes on the heels of Lockheed-Martin's purchase of an upgrade of their 128-qubit D-Wave One™ system to a 512-qubit D-Wave Two earlier in this year. With headquarters near Vancouver, Canada, the D-Wave U.S. offices are located in Palo Alto, California. D‑Wave has a blue-chip investor base including Bezos Expeditions, Business Development Bank of Canada, Draper Fisher Jurvetson, Goldman Sachs, Growthworks, Harris & Harris Group, In-Q-Tel, International Investment and Underwriting, and Kensington Partners Limited. 

For more information, visit: www.dwavesys.com or 


Source: http://www.prnewswire.com/news-releases/d-wave-two-quantum-computer-selected-for-new-quantum-artificial-intelligence-initiative-207674881.html